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Noether's theorem in generalized mechanics 

Dan Anderson 
Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg 
Sweden 

MS received 18 August 1972 

Abstract. Noether's theorem in the calculus of variations is extended to the case of a 
lagrangian density containing higher order derivatives. It Is then demonstrated how some 
recently given results of generalized mechanics can be seen as  consequences of conservation 
equations resulting from the extended version of Noether's theorem. 

1. Introduction 

Within the calculus of variations the well known theorem of Noether (see eg Gelfand 
and Fomin 1965), plays a fundamental role. I t  gives in a systematic manner a connection 
between the conservation laws of a physical theory and the invariances of the corre- 
sponding variational integral, whose Euler equations are the equations of the theory. 
However, the emphasis in the calculus of variations has been on problems, whose 
lagrangian density contains first derivatives at most of the field variable. In view of the 
recent interest in variational problems involving higher derivatives (eg Borneas 1969, 
1972, Coelho de Souza and Rodrigues 1969) it is important to formulate the very power- 
ful theorem of Noether so as to apply it to  these extended problems. This is all the more 
so since there has also been renewed interest in Noether's theorem in various contexts 
(cf Tavel 1971, Levy-Leblond 1971). 

A generalized form of the theorem will be derived, which is shown to reduce to  the 
conventional Noether's theorem, when higher order derivatives are absent. 

The extended theorem is then applied to the theory of generalized mechanics put 
forward by Borneas (1969, 1972). I t  is shown that the generalized expressions for energy 
and momentum given by Borneas can be derived from conservation laws following from 
the modified form of Noether's theorem. Finally the relation between the higher 
momenta appearing in the theory of generalized mechanics and the invariance proper- 
ties of the variational integral is investigated. 

2. The generalized theorem of Noether 

In this section we will derive the appropriate generalization of Noether's theorem. 
Notations and method of approach will closely follow those used by Gelfand and 
Fomin (1965). 

Consider the following functional J [ y ]  given by 
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where D'y(x) = d'y(x)/dx', i = 1,2 , .  . . n, and L is the lagrangian density corresponding 
to a certain physical variational problem. We now subject the functional J[yj to the 
following variation : 

x -+ x* = x + 6 x  

y ( x )  --$ y*(x*) = y(x)+ 6y(x). 

dy(x) = y * ( x ) - ~ ( x )  z 6y-6xDy. 

( 2 )  

For convenience we also introduce the quantity dy(x) given by 

(3) 

In contrast to the ordinary variation dy, the barred variation $4' obeys the commuta- 
tion relation 

D'(8y) = ~(D'Y). (4) 

The variation of J ,  expressed in terms of F J  rather than d y ,  we denote FJ and is given 
by (see Appendix) 

where 

Assuming for a moment fixed boundary conditions, we obtain the Euler equation 

- = 0. ( 7 )  
6 L  
6). 

In the following analysis we shall be working within the set of all functions satisfying 
equation (7).  This implies that 

With the use of equations (3) and (4) we obtain the first variation 6 J  as 

r n 

Changing our point of view, we regard equation (2) as the result of an infinitesimal 
transformation rather than a variation. Write instead 

x 4 X *  = @(x. y,  Dy,. . . D"J, c )  = X + E & X .  ?;. D?;, . . . D"y)+ O(E) 

y -+ y* = Y(x,  y,  Dv, . . . D"y, E) = y +  E $ ( x ,  y ,  Dy, . . . D"J) + O(E) 
110) 

where E is an infinitesimal constant parameter. Comparing equations ( 2 )  and (10) we 
get 

6x = €4 6 y  = €*. (11) 
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We now pick out for special study those infinitesimal transformations, as given by 
equation (lo), which leave the functional J [ y ]  invariant, that is, we have 

J [ y ]  = J[y*]  = J _- L(x*, Dy*(x*), . . . Dny*(x*) dx*. 
xo 

In this case the variation 6 J  must vanish and we get the conservation equation 

n 

L# + 1 PjDj-  '($ - #Dy)  = constant. 
j =  1 

(13) 

I t  is easily realized from equation (6), that if L does not depend on derivatives of y(x )  
of higher order than first we have 

j = 2,3, . . . ,  n P 
PJ = j = l  

and equation (1 3) reduces to 

which is the conventional form of Noether's theorem. 
Thus equation (13) constitutes a generalized form of Noether's theorem, which 

includes terms due to the presence of higher order derivatives in the lagrangian. The 
extension to the case when L depends on several functions y&), k = 1,2, .  . . , N, is 
straightforward and we give it without a formal proof. Write 

where y(x )  = (yl(x), y2(x) ,  . . . , y N ( x ) ) .  The transformation corresponding to equation 
(10) is 

x + X* = x + E$(x, Y(x), . . . , D " ~ ( x ) )  + O(c) 
(171 

yk Y ; ( X * )  = Y k ( X )  E l l / k ( x ,  Y(X), . . . 9 D"Y(x)) f O(E)* 

The quantities Pj are generalized to 

8L j =  1,2, . . . ,  n n - j  
py' = ( - D ) i  

i = O  a(Di+jyk)  k = 1,2 , . . . ,  N. 

Finally equation (13) will now read 

N n  

L$ + C 2 Py'Dj- l ( ~ k  - $Dyk) = constant. 
k = l  j = 1  

For the sake of simplicity we have assumed that L contains derivatives of the same 
maximum order of all appearing functions. The further extension to the case when L 
depends on derivatives of yk up to  order n k ,  k = 1,2, . . . , N, is equally straightforward, 
but will not be given here. 
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3. Applications and comparisons 

3.1. Generalized haniiltonian and niornerita 

As an application of the generalized Noether’s theorem derived in the preceding section. 
we shall study two simple transformations leading to important conservation equations 
and compare our results with the results given by Borneas (1972). 

( i )  Consider the following transformation corresponding to a translation of the 
independent variable, namely. 

We get, (cf equation ( 1  1) )  

(‘1) $ = l  l)bk = 0 k =  1.1 ....,.I’ 

which, inserted into equation (19), gives 
L n  

L -  1 Py’D’y, = constant. 
k =  I I =  1 

(7’) 

This I S  essentially the generalized hamiltonian A gnen by Borneas (1972) Actuallq u e  
have 

t n  

= 2 P~’D’J.,- L. 
k =  1 I =  1 

1’31 

The functional J is seen to be invariant under the transformation equation (20), i f  we 
assume that the lagrangian does not depend explicitly on s. In the simple case expressed 
by equation (15) a translation analogous to equation (20) leads to the conservation ot’ 
the hamiltonian expression 

Furthermore A reduces to H in the absence of higher derivatives in L.  Thus, there are 
ample reasons for calling H the generalized hamiltonian. 

(ii) Next we study a translation of the dependent variable y k ( x )  as follows: 

x *  = s 1.; = )‘k + E dk l  k = 1,2,,. . , ,V ( 2 5 )  

where 6,, is the usual Kronecker delta and I is an arbitrary number between 1 and N .  
This implies 

$ = O  $ k  = 4, k = 1 , 2  ) . . . )  N .  (26) 

I f  we insert this into equation (19) we get 

= constant. . SL n -  1 

i = O  

However, 1 is arbitrary and we obtain the result (cf Borneas 1972) 

Pik) = constant k =  1 ,2  , . . . ,  N .  (28) 

With arguments similar to those leading to the identification of R with H, we can 
justify the names generalized momenta for the Py’. 
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3.2. Higher momenta 

Although all first momenta P\k), k = 1,2, .  . . N are conserved as a consequence of the 
invariance of J under the transformation equation (25), this has no consequences for 
the higher momenta P5k), j = 2, 3 , .  . , , n, k = 1,2, .  . . , N .  A natural question (not 
discussed by Borneas) is : Under what conditions are the higher momenta conserved? 
And from our point of view: What is the relation to the invariance properties of the 
functional? 

In this section we will discuss these questions and also compare them with an 
algebraic approach based on a set of identities which constitute a recurrence formula 
for the determination of Pj (we shall take N = 1 for convenience). 

The functional J is easily seen to be invariant under the transformation equation (25) 
if  L does not depend explicitly on y. As a generalization of this, we assume that L does 
not depend explicitly on DJy,  j = 0, 1,2, .  . . , m < n, which implies that 

(29) 

First we shall use the following identities (cf Hadamard 1910): 

When L satisfies the conditions expressed by equation (29), we can integrate equation 
(30) recursively and obtain 

where ck are constants. From this result we draw the conclusion that Pj+ is constant 
if and only if ck = 0 for k = 1,2,. . . , j ,  which is equivalent to the condition that all 
momenta of order less than j +  1 shall vanish. 

Comparing this with the transformation approach we see that, provided equation 
(29) is fulfilled, J must be invariant under the following set of transformations : 

x + x * = x  y + y * =  y + a J  j = O , 1 , 2  , . . . ,  m. (32) 

This yields 4 = 0 and I) = x j ,  which, inserted into Noether's generalized theorem 
(equation (1 3)), gives 

P ~ D ~ - ~ I )  = constant. 
k =  1 

But Dk- 'I) = 0 for k -  1 2 j +  1 and equation (33) reduces to 
j +  1 1 PkbkxJ'l-k = constant 
k =  1 

where b, are constants. Equation (34) can be written 
j 

Pj+1 = - k = l  1 Pkbkxj+ - k  + constant. 

(33) 

(34) 

(35) 
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This implies that P,+ is constant if and only if all Pk vanish for k 6 j and that P,+ I 

generally is a polynomial in x of degree j ,  a result which coincides with that obtained 
by algebraic means. 

4. Conclusions 

The important theorem of Noether has been extended to take into account higher order 
derivatives in the lagrangian. When applied to the area of generalized mechanics i t  
makes possible a systematic study of conservation equations, which as special cases 
yields the conservation of energy and first momenta previously given by Borneas (1972). 
Finally the generalized theorem is shown to be a convenient tool when discussing the 
problem of the conservation of higher momenta. 

Appendix 

We derive the appropriate expression for the first (barred) variation of the functional 
J [ y ]  (equation (1 j )  assuming free boundaries. The derivation demonstrates the very 
convenient use that can be made of the concepts of bilinear concomitant and adjoint 
operator. The variation of the functional J [ y ]  (equation (1)) is 

FJ = lxy FL dx + Jyy L 6 (dx) 

The second integral of equation (A.l) can be evaluated at once to give 

L 6 (dx) = [ L  Sx];:. 

(A .1 )  

The integrand of the first integral in equation (A.l) is obtained by means of a Taylor 
expansion 

Consider the following special formulation of the Lagrange identity (cf Ince 1944): 

U D ~ U  = D[Q,(u, c)] + ~ D k r  iA.4) 

where U and U are arbitrary smooth functions, &(U, t') is the bilinear concomitant of. 
and bk the operator algebraically adjoint to, Dk. These are given by 

- k 

Q k +  1 ( ~ ,  U) = ( -  l ) k - ' D 1 ~ D k - l ~ ,  Dk = ( -  l)kDk. (A .5 )  

With the use of the commutation relations (equation (4)) and equation (A.5)  we obtain 
1=0 

We introduce the notation 
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Using the definition of the variational derivative defined by equation (6) we obtain for 
the barred variation of L : 

6L 
6Y 

6L = - 8y+ D[Q(y, L)] .  

Q(y, L )  can be put into a more convenient form as follows. Write first 

Changing summation variables according to 

k - I -  1 = i and I +  1 = j, we obtain 

We introduce the quantities Pj defined by equation (6). This yields 
n 

Q(y, L )  = PjDj- '(Fy) 
j= 1 

and summing up equations (A.l), (A.2), (A.8) and ( A . l l )  we obtain 
n 

L 6 x +  1 Pj8(Dj-'y) 
j =  1 I:: 

which is the desired result (equation (5)). 
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